Commercial radiant heating and cooling

υροποι

Reference sheet

The information in this document assumes typical construction methods used in commercial radiant heating and cooling installations.

Quick-quote procedure

- 1. Determine parameters (A), (B).
- 2. For each area, calculate total tubing (D).
- 3. Based on tubing required, estimate the number of loops (E). Make sure to account for leader lengths.
- Based on number of loops, determine number of manifolds (F). Make sure to check flow rates.
- 5. Determine coils to minimize waste (I).
- 6. Size manifold cabinets (J).
- 7. Include accessories in quote.

A. Typical design parameters – heating

Floor capacity (BTU/SF)	30
Ceiling capacity (BTU/SF)	18
Maximum surface temperature	84°F
Average water temperature	95-110°F
Typical design Delta T	10-20°F
Typical room setpoint	68°F
Typical tubing diameter	1/2"-3/4"
Typical on-center spacing	9"-12"

B. Typical design parameters – cooling

Floor capacity (BTU/SF)	12
Ceiling capacity (BTU/SF)	30
Minimum surface temperature	66°F
Average water temperature	55-58°F
Typical design Delta T	5-8°F
Typical room setpoint	78°F
Typical tubing diameter	1/2"-3/4"
Typical on-center spacing	6"-9"

 Capacities shown assume bare concrete floor. Adjustments required for flooring.
Floor-cooling capacity does not include direct solar absorption, which could increase capacity to 31 BTUH/SF.

C. Estimating capacity Q (BTU/H) = H x Delta T x surface area				
H =	Floor	Wall	Ceiling	
Cool	1.23	1.40	1.94	
Heat	1.94	1.40	1.06	

1. Delta T = ABS (space temperature-controlled surface temperature)

2. Assumes that space temperature is close to or equal to operative temperature

3. Surface area = active area

4. Does not include direct solar absorption

For further guidance, please contact your local Uponor representative or Uponor Design Services at 888.594.7726 or design.services@uponor.com.

D. Estimating tubing required T = area x 12/o.c. spacing or T = area x multiplier				
Spacing	Multiplier	Spacing	Multiplier	
6"	2.00	9"	1.33	
7"	1.71	12"	1.00	
8"	1.50	18"	0.67	

E. Determining # of loops # of loops = T/loop length			
Tubing Max. length			
3/8"	125-150		
1/2"	250-300		
5⁄8"	350-450		
3/4"	450-500		

 Maximum loop lengths determined by pressure drop. Goal PD < 10 ft.
Pressure drops can vary greatly based on operating temperature, flow rate, and glycol percentage.
Be sure to include leader tubing

F. Sizing manifolds
Size manifold based on
of loops and flow
GPM = Q/(500 x Delta T)ManifoldMax.
loops

	loops	gpin
Engineered polymer (EP)	12	15.4
TruFLOW™ Jr.	12	14
TruFLOW Classic	12	21
1" Stainless	12	14
1¼" Stainless	12	21

Max.

G. Radiant Rollout™ mat options

Spacing	9" o.c.	6" o.c.	12" o.c.	
Width	4.5'	5'	6'	
Max. mat length	165' for ½", 225' for %"			
Diameter	1⁄2" or 5⁄8"			
Tubing	Wirsbo hePEX™			
Header	³ ⁄4" reverse return or none			

H. Uponor PEX-a		I. Wirsb	
prope	rties		3/8"
200°F	180°F	73.4°F	1/2"
80 psi	100 psi	160 psi	5/8"
			3/1"

I. Wirsbo hePEX coils			
3⁄8"	100', 400', 1,000'		
1/2"	100', 300', 500', 1,000'		
5⁄8"	100', 300', 400', 1,000'		
3/4"	100', 300', 500', 1,000'		
1"	100', 300', 500'		

Custom coils available

J. Sizing manifold cabinets						
Loops	TF CL/ Jr.	TF w/ BV	EP	EP w/ BV	1" SS	1¼" SS
2-4	24	24	24	24	24	24
5	24	24	24	30.5	24	24
6	24	30.5	24	30.5	30.5	30.5
7	24	30.5	30.5	30.5	30.5	30.5
8	30.5	30.5	30.5	39	30.5	30.5
9	n/a	n/a	30.5	39	n/a	n/a
10	30.5	39	30.5	39	39	39
11-12	39	39	39	39	39	39

Slab on grade

Topping slab (staples)

Local secondary injection

Topping slab (fixing wire)

Uponor fixing wire (typical) part no. A7031000 or plastic zip ties

¾" minimum

between top of tubing and top of slab

%" Uponor _____ Wirsbo hePEX tubing

Wire mesh screen

(non-structural)

Uponor Inc. 5925 148th Street West Apple Valley, MN 55124

Apple Valley, MN 55124 USA

T 800.321.4739 F 952.891.2008 Uponor Ltd. 6510 Kennedy Road Mississauga, ON L5T 2X4 CANADA

T 888.994.7726 F 800.638.9517

4

Minimum 2" concrete topping slab

ħ

Structural slab

2" extruded polystyrene _____/

à

1 4

Heating/cooling switchover

Uponor

Comm_RH_RefGuide_70060_0917, Copyright © 2017 Uponor. Printed in the United States.

uponorengineering.com